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Abstract

This paper proposes an architecture for the control of rc_otic devices, and in

particular of anthropomorphic hands, characterized by a hierarchical structure

in which every level of the ard_tecture oontains data and control function

with varying degree of abstraction. Bottmm levels of the hierarchy interface

directly with sensors and actuators, and prooess raw data and motor _.

Higher levels perform more symbolic types of tasks, such as application of

boolean rules and general planning operations. Iayers implementation has to

be consistent with the type of operation and its requirements for real time

control. In the paper we propose to implement the rule level with a Boolean

Artificial Neural Network d%aracterized by a response time sufficient for

producing reflex corrective action at the actuator level.

l._on

The set of tools available to robotics resex3rchers to build grasping strategies

includes path planners, many types of control algorithms, and sensor data

fusion techniques. Many authors have proposed different ardlitectures for the

integration of these tools to assure a smooth fl_4 of information from sensing

to cent/-dl computing and back to actuation. A proposed system is based on

Imgical Sensor Specification [6] and consists of software layers between

physical sensors, actuators and the central processor, each one of them able

to perform some local processing on sensor data and to directly modify commands

from the top level to the actuators. A proposal also aimed at reducing the

computational load of a controller is that of Reflex O3ntrol [I] in which a

limited number of actions are carried on by the mechanical hardware to react

to specified external situations. Other authors have proposed Expert Systems

at various levels of a layered arvl_tecture for hand control. In [15] an

expert system for configuring grasp postures is proposed, and this is

integrated in [9] with an Artific/al Neural Net_x_ for learning the relations

between postures and Qbject shapes. In [7] a Iearning Expert System is

presented for the discovery and refinement of control skills for fine

manipulation tasks. These proposals represent efforts to improve performance

and applicability of Control Tneory and can be associated with the research in

Intelligent (3untrol [i0], [13], [14], whose main effort is the integration of

Control Theory, Artificial Intelligence and Operation Research in a homogeneous

structure capable of autonomous reasoning and control.

From this brief overview, it is clear that architectures based on hierarchies

of p_ing stages are undergoing extensive study, but present results do

not take full advantage of the possibilities offered by this approach. For

example, reflex control alone is not sufficient to handle a large number of
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operating conditions, and expert systems are too slow for a direct interface
with a real time process. An efficient _ (]untroller, must assure

_ate reactions to unexpected external conditions and thus bypass the long

processing time of the higher levels. A fast reaction wDuld _te for the

different execution times of planning and control, and fill in possible voids

in the _ stream. This can be of great usefulness in the case of space

servicing with time delay, when the remote operator cannot provide in_ediate

feedback, and also to free same of astronauts time.

2. Hi_cal (3cntroller

The needs described in the above paragraphs can be satisfied with

hierarc/_cal _tectures and with circuital implementations of the various

layers, that can assure better flexibility and performanoe than current

systems. This proposed control architecture consists of three levels: a

planner, a rule base and the actuator controller. Each level can be crmposed

of different layers depending on the particular application, and on the

requirement of data fusion. In the implementation that we propose, each level

consists of a single layer, and the rule base is included between planner and

actuator controller, to have response time and amount of knowledge intermediate

between those of the other two. The purpose of this stage is to store expected

relations among single feedback signals or subsets of them, and to use the

results to understand the evolution of a grasping task. In particular this

design allows for a flexible reflex control in various grasping tasks and

permits the actuator contzDller to determine autoncmct_ly the best reaction to

a given pattern of feedback signals. Both planner and actuator controllers

use feedback signals and rules output to start the g_tion of a new plan and

to modify actuator trajectory. When a new strategy is generated by the

planner, the associated rules are blended with the current rule base, to assure

a smooth transition between plans.

This architecture requires several additions to the standard implementations of

planner and actuator controllers. The first one, in fact, has to generate the

set of conditions that qualify the task evolution, while the second has to

store a set of alternate trajectories. The rule base processes the feedback

signals and generates a set of boolean variables, applies the rules supplied by

the planner to these variables and determines the c_rrent evolution of the

task. When a replanning _, it assures consistency in its rule base. In

this implementation, two basic assumptions have been made: that a small set of

actuator trajectories can cover most of grasping situations, and that the

evolution of a grasping task can be represented by logical conditions. In this

case, the rule base is an adaptive boolean netwDrk in which sensor conditions

are stored as if-then rules expressed as boolean conjunctions. A range

detector converts data from the sensors into logical levels, and the

adaptation mechanism supervises the loading of a new plan.

The complete system will include two boolean netwDrks, managed by an adaptation

unit, to ensure that adaptation does not interfere with the correct processing

of the feedback signals. When the backup network is successfully updated, the

adaptation controller will switch it on line and will start updating the other

one. Figure 1 is a block diagram of the proposed architecture of the complete

system. In the following parag_, the justification for such an approach

will be presented, together with the description of functions and

implementation of the rule base.

82



PLANNER

ANALOG
SET
POINTS

I

ACTUATOR ICONTROLLER

!
I LOGICAL

CONDITIONS

ADAPTATION AND IRULE CONTROLLER

I NEW RULES

4,

I° T l

POINT

ANALOG

COMMAND

ACTUATOR
DRIVER

I I I
,oa,c'j'
DATA t

RANGE ISELECTOR

ANALOG t

DATA 1

DATA

ACQUISITION

Fig. i: Hierarchical arct/tecture for robotic control

3. Design Ap_ to a Oontrol Architecture

In defining a structure for a hand system, two main steps have to be taken:
first the analysis of function allocation in the hierarchy, and second their

match with candidate implementations to satisfy the needs of real time control.
After the initial achievements in designing good mechanisms and control

algorithms [3] [4], much effort is ncw directed towards the definition of an
architecture that can include and organize all ccmponents of a rm/itifingered

hand system. In this situation, it oomes quite natural to turn to the

analysis of human behavior as a possible model for a control architecture.

In the functional analysis of [8],[11],[12] a causal hierarchy is defined,

describing the different types of control actions of human operators

supervising industrial plants. The layers of the hierarc/hy are based on
increased level of symbolic representation of the information, frc_ raw sensor

readings to descriptions of plant states. At each level, the degree of

complexity of the system representation is approximately kept constant. The

plant operator is the plzxzessing power acting at each level of the hierarchy on
different data abstractions. Depending on the case ccm_01exity, he/she can

initiate a control action at every layer and, in particular, at the one whose

data representation best describes the o/trent situation, such a system then



has a capability for a particular reflex action, in the sense that ccmmmnds to

the plant can be generated at all levels of the hierarchy, without the need of

reaching the top level of abstraction for deciding the next action, learning

of new skills is also necessary to fine tune the response of the system. A

hierarchical structure has the potential for implementing a distributed

supervised scheme, in which every layer can receive updates frQm the next

higher level, and can modify the logic of the next low_r level in the dual role

of supervisor and learner.

The second step in designing a control ard3itecture is the matc/q of the

functions assigned to a layer of the hierarchy with a specific i_plementation.

In particular, the interaction between the actuator control and the strategy

generated by the grasp planner is not _ell defined. During task execution , no

provision is made for using sensor feedback to update in real time the initial

plan, or for switching to alternate ones. Tne normal approach is to halt the

operation when an error condition is recognized, and generate a new plan based

on current sensor data. To answer the need for a fast activation of an

alternate plan, qualitative conditions are mixed to the robot programs,

defining the expected logical conditions of the task. To be more general, these

qualitative or logical conditions should be generated by the task planner

together with the quantitative information pertinent to the trajectory

definition. In the same way that analog information is stored in the actuator

controllers, logical conditions should be stored in qualitative controllers

that would supervise the task evolution and would manage strategy changes. In

this paper we present an example of this by assigning to one of the layers of

the control hierarchy a particular class of artificial neural networks called

Dynamically _e logical Arrays [2], [16], and by implementing it in

VISI technology.
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The model developed by _ and Lind and presented in [Ii] describes the

operator's decision making process during the control of complex plants, such

as nuclear or power facilities. The proposed data organization closely follows

the needs of the human mind in terms of quantity and quality of information

presented. Three _ have been determined to play a major role in the

modeling of a oontrol action: causal relations, complexity of representation,

and expectation on feedback data. Operators organize their mental model based

upon the causal relations existing between elements of the plant, and generate

several plant descriptions, each one with a different level of abstl-action. In

this way, the number of elements in each level, i.e. the level's complexity,

can be kept approximately constant. Particular situations direct the

operator's attention, and the corresponding control actions are determined by

the presence or by the absence of specific feedback signals. Each hierarchical

level corresponds to a different kind of mental process. At the bottom layers

actions are immediately activated by important feedback signals, middle layers

reasoning can recognize typical patterns in the feedback signals and command

more complex reactions, and top layers mental process is dedicated to a

symbolic type of reasoning in which sequ_ of patterns can be analyzed.

A schematic representation of this model is in Fig. 2, where three levels of

this hiez-urc/lical structure are visualized. The bottom level is defined as the

skill level,where no conscious action takes place, and feedback/reaction are

governed by fixed and automatic relation, e.g. maintaining a level within

ranges, or reacting to a particular alarm signal. At this level there is no
abstraction on the feedback data, but each signal is considered alone for its

particular meaning. In the middle level, some prooessing of the feedback

information is neoessary before a control action can take place. This data

processing can be quite elementary, and can be visualized as a set of rules

combining subsets of feedback signals. At this level, actions are decided on

the basis of abstract entities derived from the rules stored at this level. The

next higher level represents the knowledge level, where ocmplex inf_ have

to be made. The type of processing at this level is not characterized by sets

of rules, but by general planning functions. If we consider the above

description as a possible model for a hi_cal control structure for a

robotic system, we see that the decision process performed by the plant's

operator can be used as a guide to identify both the degree of data aggregation
needed at a certain level of the arc2dtecture and the type of processing most

suitable for that level. This model can also be used to describe a typical

sequence of actions in human manipulation.

The model can be mapped directly into a possible arv_hitecture of a control

system for an anthropmnor_hic hand. In a simple three-level structure, the

skill level corresponds to the actuator controllers, the rule level corresponds

to an intermediate processing of feedback data and actuator _, and the

knowledge level corresponds to the grasp planner, such as the one presented in

Figure I.

5. ;_Ycive Boolean

This type of network is built with node modules capable of manipulating small

sets of input variables with logical operators that can be dynamically

progranmed to change the boolean function implemented in the node. The overall
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network is then a combinatorial circuit and its _fcputs are boolean functions

of the inputs. These logical operations can be considered equivalent to

propositional logic calculation, compiled into the network as logical rules

relating symbolic inputs to symbolic outputs. Due to the nature of its boolean

constituents, this processing is completely cumbinatorial, non-numeric and

asynchronous. The ard_tecture is regular with limited connectivity and

modules can be easily structured by aggregating groups of functions.

Adaptation is an additional feature of these networks that allows them to take

an active role in configuring the oonnecticns of the logic gates, with the

purpose of optimizing some performanoe index, suc_ as m/nimality and

consistency of the rule base. Dynamic pro_ility distinguishes these

networks frum conventional l_u_m_.=J_le Ingic Arrays which realize fixed

functions after the initial p_ step. They are also diffe/ent from

User _ Gate Arrays [5], in which the logic function embedded in the

circuit can be altered by storing in the array a different set of connections

for the logic gates. These arrays play no active role during reconfiguration,

but they are repro_ on line by an external source.

The underlying concept for this class of combinatorial dataflow architectures

is the same than that of Artificial Neural _ (ANN); it is useful to make

a brief comparison of the two structures. The prc_ structure of an ANN

element is a weighted sum of inputs modified by a nonlinear threshold function,

while these type of netwDrks have fully input, output and processing boolean.

The main consequence of this is the simpler design of both the crmputing device

and its control circuits. In an ANN, learning is ad%ieved by a process of

cenverge_nc_ following a gradient path in a multidimensional state space. In

adaptive boolean networks the learning process is accomplished by adapting the

current rule base to new rules presented to the network by an outside source.

This can be viewed as a type of supervised learning in which the network takes

the active role of blending tb_ new rule with the old ones to assure

consistency and minimality (Fig.3). OUTPUTS
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Problem specification is done by _ly entering into the system if-then

rules expressed as boolean conjunctions. During processing, the network acts

as a Programmable Logic Array. The network inputs are discrete variables

supplied by the environment. The output of the prooessing is the truth values

for the logic predicates which have been previously stored in the network as

logic rules. During adaptation, the network structure changes to update the

overall network functions. As new rules are added, the network automatically

reconfigures to a logic circuit that seeks to maintain a minimal and consistent

rule base. Tnere is no explicit programm/r_ of the network, and the internal

configuration of the network is not unique and depends on the initial state and

on the history of the previous adaptations. The system accepts new rules that

are sequentially presented to it by an external controller. This process
allows each node in the network to determine its relation with the new rule and

determine whether it should be involved in the adaptation process. The

adaptation may involve addition or deletion of nodes, or ccmpaction of

subnetworks. A central controller is used for ooordination, but the adaptive

process itself is completely distributed in the network, and modifications to

network are performed with considerable corKm/zrenc_.

Rules consist of a conjunction of boolean variables as antecedent and of a

single boolean variable as consequent, e.g. :
ABC -> Z

which means that if the antecedent is true then the consequent n_st be set to

true. These rules differ from ordinary boolean functions, because of the

characteristic of propositional logic of not specifying anything besides what
the rule states. This means that no condition is set for the truth value of

(not Z) and that Z can also be true in the absence of the given antecedent.

Thus wh_er the antecedent of a rule is not matched by the input environment,

the instance provides no information about what the output of the system should

be. Rule consistency is achieved by resolving all conflicts between two

instances that contradict each other, i.e. if they are both eligible to fire

for some state of the enviro_t, and they have disoordant output.

Minimization occurs between concordant instances and only guarantees relative

minimality. Minimal representation is achieved by heuristics methods, and not

through procedures to derive a theoretical optimum. Minimality is said to have

been achieved when no two concordant rules can be equivalently represented by

one rule only, or by two rules with fewer variables.

This type of digital neural network can be implemented in several architectures

[16], depending on the degree of connectivity among the nodes and the type of
cc_mmnication allowed between nodes and the external controller. A totally

connected architecture has been extensively studied [2], and it consists of

two function arrays, separated by a controller column, as in Figure 4. The

first array is an AND plane, in which all nodes implement a logical AND

function. The second array consists of nodes implementing the logical OR

functions necessary to build the complete rule out of the minterms built in the

AND plane. The central column consists of an array of nodes called D-nodes,

which collect the output of a row of the AND plane, thus generating an output

corresponding to a minterm of a rule. Variables are associated to nodes in the

AND plane by setting a status bit in the node located at the intersection of

the column, representing the variable and the row corresponding to the minterm.

In a similar way, the OR plane collects the minterms forming a rule by using a

chained OR to represent a logical function as a sum of products.
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_ne adaptation process in this architecture is a two step process. First the

new rule is presented to the network by the Adaptation Unit, where each node

performs a self classification to determine how it should be operated on, to

bring about the correct adaptation of the network. Second, the Adaptation Unit

guides the adaptation of the node pool so that a prioritized sequence of

operations can perform the network adaptation. Rules are presented to the

circuit as a sequence of ccmponent minterms, and they are assigned to a

specific output, by enabling one of the coltmms of the OR plane. Complex

operations, such as fusion of two rules, are done by the Adaptation Unit to
which the network _es the offending minterm for external minimization.

To experiment with integration of the rule base with an real actuator

controller, the network has been implemented in VIZI technology so that it can
be located with the controller and will not affect the communication bandwidth

of the system. During processing, the network receives the output of range

selectors that transform the analog output of the sensors into boolean

variables, and then it prooesses them acoording to the memorized rules. During

adaptation, the network structure changes to update the overall network

function. In the present model, we use a reoency law for resolving rule

conflicts during the transition from a grasping strategy to the following one.

The implemented prototype is a four input, four output, eight minterm network,

calling for a 4 by 8 AND plane, an 8 node control column and an 8 by 8 node OR

plane. The whole dlip measures 7900 by 9200 microns and was designed in a

3 micron p-well CMDS technology. The chip is mounted in a 64 pin package, and

is currently interfaced to a personal computer for functional testing. All

input output lines are buffered to avoid racing conditions among the feedback

signals. Figure 5 is a mi_ of the chip.
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6. Oonclusion

In this paper we have presented the first steps of the design and

implementation of a hierarchical architecture for the oontrol of robotic

devices such as mechanical hands. The justification for this approach is found

in the analysis of human behavior during control functions, and it is an

i_provement over similar design proposed for intelligent controllers. The
three fundamental criteria that this structure satisfies are: causal

connections between layers, constant ccmplexity of each layer, and directed

focus of attention. Tne implementation of each layer must obey the same

design criteria, and therefore it must change from one layer to the other, to

fulfill the _ of processing type and execution speed of that level.

An implementation of a layer has been described, which will act as a rule base,

or logical controller, in a three layer arc/_tecture, and the characteristics

of this implementation as a boolean artificial neural network have been

presented.

The research described in this paper was performed at the Jet Propulsion

laboratory, California Institute of Technology, under contract with the

National Aeronautics and Space Administration.
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